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SUMMARY 

The propagation of a laser beam in an optically dense medium such 

as a fog, dust storm, or smoke, is a problem of growing importance, both 

for communication and detection purposes. Although such ilense media 

lead to a significant attenuation of the primary beam, much of the 

scattered radiation may still be found close to the beam axis and will, 

thus,be available for detection by a suitable detector. In this report 

we examine the spreading of a laser beam using the small-angle scattering 

approximation to the equation of transfer. This approximation, which 

assumes that most photons travel essentially parallel to the beam axis, 

has also been used to study the propagation of fast charged particles 

through metal foils. It appears to be equally suited to the study of 

the propagation of beams of visible or near infrared light through media 

such as fog, dust or smoke, where the scattering phase function is 

highly anisotropic. 

This equation of transfer may be solved in closed form by the use 

of Fourier transform techniques. The resulting expressions are simplest 

for the radiance, or alternately the power received by a coaxial detector, 

rather than for the irradiance. In view of the assumptions involved in 

the small-angle approximation, it is the radiance which is of more 

interest anyway. The resulting expression involves a single integral 

from zero to infinity; the appendix outlines the procedure for its 

numerical evaluation. 

V 



In keeping with the approximate nature of our solution, and in order 

to fully exploit its mathematical simplicity, we have chosen simple analytic 

models for the forward peak of the scattering phase function, rather than 

using Mie theory. As well as the well-known Gaussian functional form, we 

also examine some exponential and binomial models. Our computational 

results indicate that, provided the parameters of the models are suitably 

selected, there is little to choose between the models, with the exception 

of the sea-water model, which we do not recommend. 

Despite the relative simplicity of the expressions that we obtain, a 

number of authors have resorted to further approximations, in order to 

extract even simpler results. The method of Dolin and Fante starts by 

separating the scattered and unscattered beams. In the case of a 

Gaussian phase function, this method leads to a single finite integral, 

which shows reasonable agreement with our results. The method of 

Arnush and Stotts is essentially a low-frequency approximation, which 

yields reasonable results well away from the beam axis but leads to 

unphysical results close to the axis. The method of Tam and Zardecki 

involves a series expansion of our integral leading to a series of 

multidimensional finite integrals; it is applicable to both radiance 

and irradiance (which is its main advantage), though only for the 

Gaussian phase function. 

vi 



1-U INTRODUCTION 

If a relatively narrow beam propagates in a scattering medium, photons 

are constantly removed from the beam. However, if the scatterers are of 

a size equal to or greater than the radiation wavelength, such as in the 

case of smoke, dust or fog particles compared to visible wavelengths, then 

most scattering events will result in a comparatively small deflection of 

the photon. This may lead to a gradual spreading of the original beam, both 

in thickness and angle. 

In this report we examine the broadening of a laser beam, and the signal 

that may be detected, as functions of both experimental geometry and the 

properties of the scattering medium. We shall employ the small-angle approxi- 

mation to the equation of radiative transfer, which ignores photons which 

have suffered large deflections as they will be assumed lost. In order to 

obtain tractable answers, it will prove necessary to assume simple analytic 

forms for the scattering phase function and the initial beam profile. Never- 

theless, the analysis presented in this report will be as free as possible 

of unnecessary approximations. 

2.0 EQUATION OF TRANSFER IN SMALL-ANGLE APPROXIMATION 

Let I(z, E, 2) dy % be the intensity of radiation (or the number of 

photons) in a volume element d,V centered at the point z, r = (x, y), and w 

travelling within a cone of solid angle d$ centered about the direction 3. 

Then I satisfies the equation of radiative transfer, which we may write 

(Refs. land 2): 

[fi . v + cJ] I(z, E, $) =woo 1 P'$ . $') I(z, 5, $') d$' (1) 
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where 
-1 

(5 is the extinction coefficient (km 1 

w o is the albedo of single scattering 

$ = cos-l '5 . 2' n ) is the scattering angle 

and P(a) is the scattering phase function 

Even allowing for cylindrical symmetry about the axis of propagation 

(the z axis), Eq. (1) is exceedingly hard to solve, even numerically. However, 

since the diameter of our detector will always be small compared to the total 

propagation distance, we may safely assume that all photons which are eventually 

detected will have spent their flight time travelling essentially parallel to 

the z-axis. We may thus set cos 8 = 1, where 8 is the angle the photon makes 

with the z axis. 

Note that this approximation ignores the contribution from all photons 

which undergo at least one large-angle scattering event. All such 

photons will clearly need to undergo at least a second large-angle scattering 

event, and maybe even a third, in order for them to reach the detector. As 

we are assuming that the phase function, P, is strongly forward-peaked, the 

probability of two or more large-angle scatterings is clearly very small, 

and thus the neglected contribution will be small. 

The main effect of this assumption is to replace the unit propagation 

vector by 

ii E (n n I+ z' -J- (1, n 1 
-1 

. (2a) 

Although this new propagation vector is no longer correctly normalized, this 

should not cause any problems, as the number of photons for which 1~~1 << 1 

is not true will clearly be small. 
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The second effect is that we may use c1 - $- as the argument of P 

in Eq. (l), i.e., 

(2b) P($ l fi') + P(n - n') . ..a - "I "-L 

The third effect is to replace the limits of this (two-dimensional) integral 

by + 00. With these points in mind, we may now rewrite Eq. (1) as 

a 
-+n aZ a+0 

-1 * ar I(z, r,n)=w 0 P(n - n') I(z, r, n') dn' . (3) . --I O ff --I --L - -1 -1 -co 

Equation (3) is referred to as the equation of radiative transfer in the 

small-angle approximation. Its main advantage over Eq. (1) is in the simplification 

of the directional derivative. This equation has been used extensively in the 

theory of foil penetration by fast charged particles (Refs. 3, 4 and 5). Though 

Wentzel (Ref. 3) was the first to use the small-angle approximation for charged 

particle transfer, perhaps the first person to employ this equation in the field 

of radiative transfer appears to be Dolin (Ref. 2) - 

One further result of the small-angle approximation is that all detected 

photons are assumed to have travelled the same distance. Thus their time of 

travel is constant, and a pulse will undergo no time-dispersion. 

3.0 FORMAL SOLUTION IN THE SMALL-ANGLE APPROXIMATION 

Equation (3) may be solved, at least formally, by the use of Fourier 

transform techniques. Introducing the definitions 



co 

hbn, 5, = (2T)-2 
J JJi 

I(z, r, n1) e j-07-r + E.-n11 dr dn _ _ - _ .., s _ . ..I 
-Co 

and G(c) = (HIT)-' 
i c-n, 

P(zL) e ""Idn , 
--L 

-Ccl 

we take the double Fouriertransformof Eq. (3) to obtain (Ref. 2) 

Equation (6) is easily solved, to yield (Refs. 2, 5) 

z(Z, rl,E) = ;o(!, 5 + z 2) e 
-oz+n 

w - 

where 

and Tot]?, 5) is the Fourier transform of the initial intensity distribution 

(incident beam profile) at z = 0. 

TO obtain the intensity distribution at any point in the medium, it iS 

merely necessary to re-transform Eq. (7) (Refs.6 and 7) 

4 

(4) 

(5) 

(6) 

(7) 

(8) 

00 

-2 JJJJ 
-i(n.r+E.n) 

I(z, r, n ) = (2lT) 
- -I 

^I(z, rl, C;) e w w - -l dn dc . (9) w - w u 
-co 
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The principal difficulty with this procedure is the evaluation, and 

subsequent exponentiation, of the function G?. Evaluation of fi in the case of 

a real (Mie) phase function would appear to be prohibitive, and we shall employ 

instead a number of simpler analytic functions for P (described in later sections). 

However, even with such simplifying assumptions, many authors have still fount 

it necessary to employ further approximations in order to obtain tractable 

expressions for 1 (Eq. 7). We shall examine two of these approximations later. 

Before we proceed to specific examples, however, we remind ourselves that 

it is irradiance (flux density) and received power, rather than radiance, which 

is of concern to us in this study. Using the relation between irradiance, N, 

and radiance, I, we may simplify Eq. (9) (Refs. 2 and 6). 

N(z, r) E J I(z, r, n )[^n . 2^] aii 
21T 

--.- - - 

co ,” J I. I(z, r, n ) dn 
- -I -I 

-co 

Co 
JJ A = I(z, q, 0) ewi 'I': dn - w . 
-00 

With the elimination of 5 in Eq. (ll), we may simplify Eqs. (7) and (8): 

-uz + R 
%z, n, 0) = ;o(9, 2 nl e 

0 
. - 

(10) 

(11) 

(7') 



where n 
0 

6 

(8’) 

Equation (11) can now be further simplified by an appeal to symmetry. Since 

P($) clearly depends only on the scalar In ], and not on the vector n , G will 
"I "I 

similarly be a scalar function, as will fi . Similarly, if we assume that the 
0 

incident beam profile is circularly symmetric, then fo(!, z n) will also be 

a scalar function of T). Thus ?(z, T-I, 0) will be a scalar function, and Eq. (11) 

becomes 

J 
00 

N(z, r) = 27r 
0 

Jo(n r) ?(z, n, 0) rl drl a 

From Eq. (11') we see immediately that N is a scalar function of r, as we 

would expect from the above symmetry arguments. A more tractable expression 

for the case of a d-function beam will be given in Eq. (31). 

In most instances, of course, what we are most interested in (and what 

we physically measure) is the power received by some detector. This will 

involve the integration of Eq. (11') over the area of the detector, perhaps 

modulated by a response function. If we assume a coaxial, circular detector 

of radius R, with a flat response, then we have 

R 
Hz I R) = 2Tr J N(z, r) r dr 

0 

J 
03 = 4rr2 eDuz R 

Jl(n R) To('l, s 1) e OR dn . 

0 

(11’) 

(12) 
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This result should prove amenable to numerical integration, especially if 

a relatively simple expression for R. can be obtained. Sample results will 

be presented 'below. 

One useful result which can be obtained analytically, is the total power 

crossing a surface z = constant: 

co 
P(z, 03) = JJ N(z, r) dr - w 

-CO 

m 
-in-r = JJJJ zz, n, 0) e _ - dn dr - ..a _ .., 

--co 

= 4T2 ^I(z, 0, 0) 

-uz + 2Tr wou z G(O) 
= 4T2 To(O, 0) e 

-(l 
= F. e 

- wo) uz 
(13) 

where F 
0 

is the incident total power, and we have used the fact that G(O) = (2~)~l. 

From Eq. (13) we see that the only energy removed from the beam is that lost 

by absorption -- i.e., there is no backscatter. 

One further parameter which will often prove useful is the beam spread, 

which we may define as 

<r2> = N(z, r) r3 dr / N(z, r) r dr 

(1 - wo) uz 
= HIT F-o1 e N(z, r) r3 dr . (14) 



4.0 EXACT SOLUTION FOR GAUSSIAN BEAMS 

At the entrance to a scattering medium, a laser beam profile can often 

be adequately represented by a Gaussian functional form, both for the radial 

distribution, and the angular divergence. Thus we have 

Io’z, III) = F. B2 y2 IT-~ exp(-B2 2: - Y2 z2) . 

This may be easily transformed, and, in particular, we have 

:Oh z rj) = Fo(2~)-2 exp (-q2 / 4 y2 - z2 T12/ 4 B2) * 

(15) 

(161 

In general, the laser beam profile will be well collimated, so that 6 and y 

will be large. The inclusion of Eq. (16) in Eq. (12) will in no way complicate 

the numerical integration, though in our examples later we will allow both to 

go to infinity, so as to reduce the number of parameters whose influence should 

be examined. In all practical calculations, however, realistic values of both 

parameters should be included. 

4.1 Gaussian Phase Functions 

A Gaussian functional form is also often employed to describe P(Q), since 

exact Mie theory is clearly somewhat impractical. Thus we choose to write 

P(Q) = 2u2e 
22 

-a lJ / 21T . (17) 
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The ~1 is an adjustable parameter, which controls the shape of the forward peak, 

-2 
and is related to the rms scattering angle $ defined as 

2 
co 

l) =2,lT 
J 

P(W Q3 d'# a (17a) 
0 

It is easily shown that for the Gaussian case 

Q2 = a-2 . (17%) 

(Though c1 will usually be large, it will rarely, if ever, be as large as 

B or y-1 Taking the Fourier transform of Eq. (17) , we find 

J 
co kg = J (5 $J) p(q) '!' dJ, 
0 O 

2 2 
= e -5 14 a , 2n 

and hence R = 
-1 

0 woo n a Jji-erf (zr1/2a) 

where erf is the well-known error function. 

Substituting Eqs. (16) and (19) into (12) we find 

P(Z, R) = F. R (rl R) exp [LII,~ i7 
-1 

c1 fi erf (zQ/2c) 

- uz - n2/4 y2 - z 2 n2/4 B2] drl . 

(5') 

(18) 

(19) 

(20) 



,,_- .-_--_- ..--_._-_- 
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Equation (20) is an exact equation, which is solved numerically for various 

values of I?I and y. Here, we make a simplification in Eq. (20) and consider 

the limiting case of (3, y + 03. This physically implies that the beam is 

collimated and has zero width in space. Then by making the variable changes 

-c=uz 

‘I =w T 
S 0 

-y LQ 
G = R/z 0j.J ) 

X=rlR 

Equation (20) can be reduced to 

J 
03 Hz, R) = F. emT J1o() -G’ ITS h q-l erf (x/2G)] dx . 
0 

(21) 

(22) 

The power of the unscattered beam at an optical depth of 'c is, of course, 

-T 
Foe . Thus, the presence of forward scattering has increased the detected 

power by the factor 

J 
co A(T 

S’ 
G) = 

0 
J,(x) exp ~~ Jn. G x I- -1 

erf(X/2G) dx . 
I 

(23) 

A, which we call the amplification factor, is a function of two parameters; 

T 
S’ 

the scattering optical thickness, and G, the geometry factor. 

-.-- . . .-.. ._-.--..--- .-- .--..-.-.-.__.. ---.-.-_---- __..- A 
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Finally, we may obtain the beam spread by substituting from Eqs. (11) and 

(16) into Eq. (14): 

2 <r > = T -2 
s z2/3cr2 + z2/B2 + y . (24) 

In general, the first term should dominate, except perhaps close to the 

point of entry into the medium. 

4.2 Non-Gaussian Phase Functions 

Although the Gaussian form in Eq. (17) is a popular model for the 

forward peak of the phase function, it is often a good idea to examine other 

models, to make sure that none of the results are simply an artifact of the 

Gaussian model. In this section, therefore, we shall examine a number of 

other functional forms which may be (and have also been) used to model 

anisotropic phase functions. We shall follow essentially the same steps as 

in the previous section, and present only the results, unless further 

explanation is necessary. 

4.2.1 Exponential Phase Functions 

i) P(Q) = Ct2 e -a 52, 

G(5) = a3(a2 + 5 ) 2 -3/z , 2n 

i-z0 =T s (1 + y2/6)-1'2 

where 

(25a) 

(2%) 

(25~) 

(26) 
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Thus 

and 

ii) 

Hence 

J 
co A(T G) = 

iI 
2 -l/2 

S’ J (Xl exp TS (1 + X2/6 G ) 
0 l 1 dx (Ed 

<r2> = 2 Ts z2/a2 + z2/a2 + y -2 
(25e) 

P(Q) = CX 1cI-l e-" '/2* (27a) 

S(C) = cl(cx2 + 52)-l/2 / 2lT (2%) 

i-2 
0 

= kc! -ls y-l 2 1/2 In [y/fi+(l+fy) J. (27~) 

J 
a, A(T 

S’ 
G) = o Jl(X) exp TS 

1 
&Gx 

1 2 -2 1/2 
-1ln x/Gfi+(l+yx G ) 

L1 II dx (27d) 

<r2> = 2 T 
S 

z2 / 3 a2 + z2 / E2 + T2. 

Note that, although Eq. (27a) implies'P(0) = co, the inclusion of the correct 

solid angle factor leads to a finite result for the amount of light scattered 

through any angle. In fact, Eq. (27a) has been employed by Bravo-Zhivotovskiy 

et al. (Ref. 6) to model the phase function of sea water. 

4.2.2 Binomial Phase Functions 

This time, we consider phase functions based on the functional form 

(1 + cx21J2p -l. We will need the result that 

J 
m 

J,(T-#) (1 + cL2Q2)-'-l I# d$ = (T-I/~c# KU (?-l/a) / cr21w + 1) 
0 

(28) 

where K is the modified Bessel function of the second kind. Thus if 
u 



.__- ----.-- ..-- -- 

p,($) = 2 p a2 (1 + c(2$2P-1 / 27r 

52 =TS 
0 

,,LZ rlFc + $) [Kp (y') LF(-l(Y') + KP-l(y') LFI(g)I ' r(') 

where y' = YJi= 

and LU is the modified Struve function of order 1J. 

The expression for A may be easily written down. For 1-I > 1, we may 

obtain the beam spread: 

<r2> = fs Z2/3 Cr2(l.l - -2 1) + z2/B2 + Y . 

Note that if 1-1 is an odd'half-integer, Eq. (29c) may be expressed in terms 

of exponential functions. For example, for p = 3/2 we find 

Qo(3/2) = -cS [2 fi y -1 _ .-Y/G (1 + 2 fiy-lg 

13 

(29a) 

(29b) 

(29c) 

(29d) 

(30) 

A(Ts, G) = J,(x) exp { Ts 2 P- 2Gx-l-e 
-X/Gfi 

(1+2 fi Gx-l)]) dx, (30') 
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4.3 Beam Profile 

The spreading of a laser beam in a forward-scattering medium can be 

most simply described via the beam spread parameter, <r2> , which we have 

derived above. However, the profile of the expanding beam is also of interest 

and will now be considered. 

The formal expression for irradiance versus distance from the axis is 

given by Eq. (11'). In most cases, this expression is well-behaved. However, 

in the special case of 6, y + 03, Eq. (11') will diverge. An alternative 

expression for N(r) may be obtained either by an integration by parts of Eq. (11') 

or by differentiating Eq. (12). Adopting the second approach and setting 

1 = Fo(27r) 
-2 

0 
, we obtain 

1 dP 
N(r) = - - 27TR dR 

J 
co i-2 =- (2Tr)-1 F rm2 e-' 

0 
0 

J1(x) eOfi;ydx (31) 

where the prime denotes differentiation of fro with respect to y (Eq. 26). With 

the exception of the sea-water phase function, R. goes as y 
-1 

for large y, and 

-2 
so Q; goes as y , and convergence is assured. 

5.0. APPROXIMATE SOLUTIONS 

In an effort to simplify the above analysis, several authors have 

employed a number of approximations. In this section we shall examine two 

of these approximations, neither of which appears to be particularly useful 

in our problem. 
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5.1 Dolin-Fante Method 

Dolin (Ref. 8) and Fante (Ref. 9) have argued that the angular shape of 

the scattered intensity should be a much more slowly varying function than 

PQJ) I and have thus extracted it from the integral on the right side of Eq. (3). 

After separating the scattered intensity from the unscattered, and Fourier 

transforming, they arrive at the following expressions 

F”(z, rl, 0) = e -uz To’!, z 0) w - 

Z 

2% n, 0) = :o'zv z n) - J 
Z 

and dz' exp [- Cr z' - J A(t, rl, z n) dtl - w - - 0 zl 

l wou G 117 (z - z’,l 

where X(t, T-l, 
2 

+ (1 - wo)o 

Z 

X(t,u,zv)dt 
2 

=& won/J T-l2 (z 
- - 

- Z’) 3 + (1 
z’ 

- wo) (5 (z - z’) 

(32a) 

(32b) 

(33a) 

(3%) 

2 
and $ is defined by Eq. (17a). 

Equations (32) and (33) may now be inserted in Eqs. (11) or (12) as required. 

Although G is no longer exponentiated, this result is complicated by the 

additional (finite) integration over z'. In the case of a Gaussian phase 

function, it is possible to reverse the orders of these two integrals, and 

perform that over n, to give 

1 
WOT 

A=e -WT 
I 

dt exp [w 'c t - G2/(t woT t3 + t2)] . 
O 0 0 

(34) 
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Our calculations show that this approximation is reasonably accurate, 

except in those situations where T is large and G is small. In section 7 

(Numerical Results), we will compare the predictions of Eq (34) with those 

of Eq. (23). As it is not possible to perform any of the integrals for 

any of the other phase function models, we have limited our examination 

of this approximation to the case of the Gaussian phase function. 

5.2 Arnush-Stotts Method 

In order to extract analytic answers, Arnush (Ref. 10) and Stotts 

(Ref. 11, 12) have expanded G to second order before performing the integration 

to obtain R. (Series expansion of R would yield the same result.) Arnush 

has used Bravo-Zhivotovskiy's (Ref. 6) sea water phase function, Eq. (27a), 

while Stotts originally used a Gaussian phase function, Eq. (17), and more 

recently the sea water phase function. This approximation is sufficient 

to provide the correct values for both P(z,m), and <r2>. 

We start by re-writing the definition of R as follows 
0 

ilo = 2.F cd0 uz (?-)z)--l J 
rlz 

.!?(t) dt 
0 

= 2Tr w. uz (qz) 
-1 pz 

J 

co 

Jo 0 
Jo(t$) P(q) $ d$ dt . 

Expanding Jo as a power series leads to 

- 
R. = w. uz (1 - T12z2 Q2/12 + . . .) 

where 7 is defined by Eq. (17a). 

(35) 

(36) 
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It is complicated, but reasonably straightforward to obtain the following 

expression for the beam spread parameter: 

<r2> = $ u. (5 z3 J12 + z2/B2 + y2. (37) 

Ignoring the h,igher order terms in Eq. (361, we may insert this expression 

into Eq. (11') to obtain 

N(z, r) = F. exp [- (1 - wo) T - r2/<r2>] / 7T <r2> . 

Similarly, integration of Eq. (12) leads to 

-(1 
P(Z, R) = F. e 

- uoh 
L- l-e 

-R2/<r2> 1 . 
Ignoring B and y, we may re-express Eq. (39) in more familiar terms 

-(1 
P(z, R) = F. e 

- Uo)T 
exp (- 3 G2 Ts) , ‘1 

i.e., A0 
S’ 

- exp (- 3 G2 TV) . 
'I 

(38) 

(39) 

(39’) 

(40) 

Expansion of Q. to second order in y is equivalent to an asymptotic 

expansion to second order in G 
-1 -1 ,orR . Thus we may expect this approximation 

to be accurate for large values of G or R. However, its behaviour for small 

values of these parameters is quite different from that of the exact results 
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quoted in previous sections. Thus we cannot expect this approximation to 

prove particularly useful for our problem, as shown later by numerical comparisons. 

In fact, one finds values of A which are less than unity! 

For our problem, of course, we are concerned with small values of R and G, 

and hence we are interested in the behayiour of R o for large values of yI i.e., 

its asymptotic expansion. The phase function model of Eq. (27a) does not have 

an asymptotic expansion, due to the fact that P(0) = 03. For the other cases 

we may easily show that 

s-2 
0 

- Ts G/Y (41) 

J 
03 

where G = 2lT P(Q) W/a . (42) 
0 

Thus for a Gaussian (Eq. (17)), q = JTr; Eq. (25a) gives e = 1; and Eq. (29a) 

gives q = 1~ B($,p + $), where B is the beta function. (For 1-1 = $ , for example, 

ij = 2.) 

For large values of y, the Arnush-Stotts approximation to fi 
0 goes to 

(minus) infinity, and so we cannot expect this approximation to accurately 

predict the power received by a small detector. 

6.0 EXACT METHOD OF TAM AND ZARDECKI 

The method of Tam and Zardecki (Ref. 7) is exact, at least in principle, 

but requires the evaluation of multidimensional integrals, the order of which 

is equal to the order of multiple scattering involved. We will restrict this 

discussion to the case of the Gaussian phase function only. 
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The Tam and Zardecki method consists in expanding exp (fro) in a Taylor 

series, before performing the integration over z' (Eq.&q. Thus, inserting 

Eq. (18) in Eq. (8'), and performing the Taylor expansion, yields 

exp (Ro) = 1 + El 
c 

Z Z m 
- -*- 

m J J dzl .-- dzm exp { -n2 isl Z: / 4a21. (43) 
zm!O 0 

We may now perform the inverse Fourier transform (Eq. 11') to yield 

where 

and 

where 

m 

N(z, r)AF e 
0 

Nm(z, r) 

No = 
z2 B2 y2 

exp (- 
r2 2 2 

z2 y2 + fi2 
Byl 

z2 y2 + B2 

(44) 

(45) 

1 1 N = -*- 
m J J 0 0 dzl 

- -* dzm A -' 
m exp [_r2/z2 Am-] (45b) 

A -2 'I 2 
= c1 iii1 i Z m +B 

-2 -2 -2 
+z y * (45c) 

We may note in particular that N 
1 may be evaluated analytically in terms 

of the error function. The resulting expression is quite complicated, except 

in the case where (3 and y go to infinity, in which case we get 

where 

N1(zr r) = a2 Jn [l - erf(g)] / 2g 

g = r a/z . 

(46a) 

(46b) 
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Turning our attention to the power received, we obtain an expression 

similar to Eqs. (44) and (45), viz. 

c 
p(z, R) = F. e-T ? - 

m=g m'! pm(z, RI 

2 2 2 
whereP = 

0 
l-expI- R 6 Y 

z2 y2 + B2 
1 

and ', = cress 1: dzlsss dzm (1 - exp [-R2/z2 /L,]} . 

(47) 

(48a) 

(48b) 

Note that, from Eqs. (47) and (48), Eq. (13) may be obtained trivially. 

As with N 
1' 

P1 is also analytic , and in the simple case of B, y + m, we obtain 

2 
p1 (z, R) = l- eS + G hT [l - erf(G)] . 

The number of terms required for the convergence of the series in Eqs. (44) 

and (47) grows steadily with Ts, and so in some casesfor large optical thicknesses 

it may become prohibitively expensive to use it. Nevertheless, these results 

have one use in that Tam and Zardecki (Ref. 13) have shown that the mth order 

terms in Eqs. (44) and (47) correspond to the contribution from mth order 

scattering. This in itself is a useful result. 

Another use suggests itself, however. The Gaussian phase function is simply 

a model, with the parameters a and W 
0 

available for adjustment to match "real" 
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scattering patterns. Since we now have a simple expression for the singly 

scattered contribution, we may compare it with that produced by a real phase 

function and adjust cc and w. accordingly. Then we may use the results outlined 

above to estimate the multiply scattered contribution from such a phase 

function. Comparisons with second and higher order contributions ,are also 

possible. This should increase our confidence in the worth of results obtained 

from a model phase function. 

7.0 NUMERICAL RESULTS 

In this section, we shall present some typical results based on our exact 

formulation and the Arnush-Stotts type approximate method from selected computa- 

tional results. We shall examine 4 phase function models: Gaussian (Eq. 171, 

both exponential models (Eqs. 25a and 27a), and the binomial model with u = 3/2 

(Eq. 29a). To simplify discussion, we shall refer to the phase function model 

of Eq. (25) as the exponential model, and that of Eq. (27) as the sea-water model. 

We start by examining the phase functions themselves. It is, of course, 

much simpler to plot the normalized phase function, I;, rather than P, where 5 

is defined by 

G = 2lT P / or2. (50) 

Unlike P, p is now a function of only one variable, C#. In Figure 1, we plot 

P against o$, for 0 5 cw$ s 3.5. 
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The next function we examine graphically is Qo. In Fig. 2 we plot 

no/Ts against y for all 4 phase functions, as well as the Arnush-Stotts 

approximation. From this log-log plot, the asymptotic behavior of the 4 

phase functions is apparent, particularly that of the sea-water phase function, 

which has no asymptotic expansion. Although it is not obvious from this figure, 

the curve for the binomial phase function actually lies slightly above the 

sea-water curve for y values less than about 3. Finally,we note that for y 

values greater than 2, the results obtained by the Arnush-Stotts approximation 

differ markedly from those by our exact formulation, rapidly approaching large 

negative values for y greater than 4. 

We now turn to a discussion of the amplification factor, A, and the 

power received, P, as predicted by these 4 models, and also the Arnush-Stotts 

approximation. We have evaluated both A and P for G between 0.01 and 1.0, and 

~~ between 0.5 and 15.0. (Throughout, we have assumed B, y + 03.) 

In the Appendix to this report, we have included a listing of the FORTRAN 

program used to generate this data, along with a brief explanation and sample 

output. 

In Figure 3 we plot A against G for a series of IS values, for the 

Gaussian model. In Figure 4 we plot P against Is (assuming unit incident 

power) for a series of values of G, again for the Gaussian model. Also shown 

on this plot is the transmission, T, which represents the power that would 

be received if all scattered light was lost. These two graphs clearly 

indicate the important role that forward scattering can play in the detection 

of transmitted beams, especially for optical thicknesses of the order of 

10 or higher. 
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In Figure 5 we plot A as a function of G for IS = 4.0 and 10.0, for 

all 4 model phase functions, for our formulation as well as the Arnush-Stotts 

approximation. In the latter case, one finds values of A which are less than 

unity. Note that the binomial and sea water curves cross for both I values 
S 

(cf. Fig. 2). For large values of G, we see that there is little to choose 

between the four phase function models. 

In Figure 6, we plot (A - 1.0) against G in log-log form for 'c = 1.0, in 

order to emphasize the linear relationship implied by Eq. (A3) in the Appendix. 

We see that for G less than 0.3, the integral term in Eq. (A3) makes a negligible 

contribution. In Figure 7, we plot (A - 1.0) against G for I = 5.0. Here we 

see that the integral term in Eq. (A3) is starting to make a contribution. Also 

in this graph we have included the Arnush-Stotts and Dolin-Fante approximation 

results. The Dolin-Fante result was not included in Figure 6 as it could not 

be distinguished from the exact result for the Gaussian phase function. 

8.0 CONCLUDING REMARKS 

The propagation of a laser beam in an optically dense medium such 

as a fog, dust storm, or smoke is a problem of growing importance, both for 

communication and detection purposes. Although such dense media lead to a 

significant attenuation of the primary beam, much of the scattered radiation 

may still be found close to the beam axis and will, thus, be available for 

detection by a suitable detector, 

In this report, we have examined the spreading of a laser beam using the 

small-angle scattering approximation to the equation of transfer. This 

approximation appears eminently suited for the study of beam propagation in 

fog, dust, or smoke media, where the scattering phase function is highly 
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anisotropic. As well as the standard Gaussian model phase function, three 

other model phase functions have also been examined. The Gaussian functional 

form was used to describe the initial beam spread and profile, although the 

analysis is somewhat simpler (and the resulting expressions tidier) if the 

limiting case is taken. 

All the numerical results presented in this paper have been based on 

the assumption of a narrow, collimated beam. We may remark, however, that 

the results and expressions presented in this report (e.g., Eq. 20) may be 

applied with full generality. 

We have also examined a number of approximations which have been used to 

further simplify the expressions we have derived. The Arnush-Stotts 

approximation is quite suitable for use in the asymptotic regions, at large 

distances from the beam axis. However, the behavior of the solutions close to 

the beam axis is governed by the parameter q, the zeroth moment of the phase 

function. This moment weights the contribution from scattering through very 

small angles far more highly than does the parameter I$" , the rms scattering 

angle, or third moment. In fact, for small R (i.e., small G), one may 

expand Eq. (23) to first order (cf. Eq. A3) 

A(Is,G) = 1 + -rs ; G + . . . 

Finally, we may remark that the method proposed by Tam and Zardecki makes 

a useful contribution by providing a connection between real (Mie) phase 

functions, and the parameters which must be used in the model phase functions 

used in this report. Further work on the applications of this method is 

recommended. 
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APPENDIX: COMPUTATIONAL DETAILS 

The numerical results presented in Figs. 3 to 7 were obtained from a 

relatively simple computer program, consisting of less than 100 executable 

statements. A full listing, and partial output, are included in this 

appendix. 

The task of this program is to evaluate the numerical integrals in 

Eqs.' (23), (25d), (27d) and (30'), for a series of values of Is between 

0.5 and 15.0, and a series of values of G up to 1.0. For comparison, 

the Arnush-Stotts approximation, Eq. (39), is also computed. We have 

included the full results for 'c 
S 

values of 4.0 and 10.0, which may be 

read in conjunction with Fig. 5. 

Although infinite integrals of this type are often handled by 

Gauss-Laguerre quadrature, this method was found wanting, due to the 

oscillatory nature of the integrand. Instead we have employed Simpson's 

rule, up to a finite cut off, allowing for the remainder of the integral 

by the following result: 

If 

fog = @ (xl for x ? X - 

and 

@(Jo dx = Q is known, 
0 

then 

co X 

f(x) dx = Q + [f(x) - G(x) I dx . 
0 0 

(Al) 
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To apply this result, we note Eq. (411, and choose X such that 

52 
0 e = l+IsgG/x, x, X. (A2) 

Thus 

I 

m R 

I 

X i-2 
Jl (x) e odx"l+TsqG+ J,(x) (e"- l-IseG/x) dx. (A3) 

0 0 

Due to the wide range of values of G which we have used (three orders 

of magnitude) it is necessary to vary the step size accordingly. Thus we 

have used a step size equal to G, up to G = 0.22. A step size larger than 

this is unwise, due to the variation in the Jl term. Thus, when we reach 

G = 0.22, a larger set of J 1 
values is computed and stored, to be used for 

the remaining values of G. 

As pointed out above Eq. (41), s is undefined for the sea water phase 

function, so we have set e = 0 in this case. As a result, we are forced 

to choose a considerably higher value of X in order to satisfy Eq. (A2). 

In fact, if the sea water phase function was dropped from consideration, 

the time (and cost) of these calculations would be cut at least in half. 

As it is, the results we have obtained for this phase function must be 

considered distinctly less accurate than the others. 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
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PROGRAM PROPGTN~OUTPUTITAPE~=OUTPUT~ 

THIS PROGRAM COMPUTES THE SIGNAL DETECTED BY A COAXIAL 
DISK DETECTOR WHEN A LASER BEAM HAS TRAVERSED A MEDIU'? 
WITH A HIGHLY FORWARD-PEAKED PHASE FUNCTION, USING TilE 
EOUATION OF TRANSFER IN THE SMALL ANGLE APPROXIMATION. 

4 DIFFERENT SCATTERING PHASE FUNCTIONS ARE COflSIOEPfDI 

11 GAUSSIAN 2*ALPHA*;bZ*EXP(-(ALPHA*PSI)""2) 

2) EXPONENTIAL ALPHA**2*EXPl-ALPHA*PSIl 

31 SEA WATER ALPHA*EXP(-ALPHA+'PSI)/PSI 

41 6IN6MIAL 32ALPHA~*2*~1+~ALPHA*PStl*~Z~**~-5/2) 

THE ARNUSH-STOTTS At'PROXIflATION IS ALSO COtlPUTED FOR 
THESE PHASE FUNCTIONS. (NOTE THAT THIS ~PPttoxxt’ATIn~ 
GIVES IDENTICAL RESULTS FOR PHASE FUtlCTIOflS 3 AtJO 41 

DEFINITIONS........... 
SP = SORT(PI) 
X = INTEGRATION VARIABLE 
DX l INTEGRATION STEP SIZE 
Y . X / G 
G = RADIUS OF DETECTOR * ALPHA I PATH LENGTH 12) 
TRANS m TRANSMITTANCE 
OMEGA * INTEGRAL FROM 0 TO 2 UF THE FOURIER 

TRANSFORM OF THE PHASE FUNCTION 
AMP = AMPLIFICATION FACTOR 
SA 9 ARNUSH-STOTTS APPROXIAATION FDr'. AMP 
SIGNALS DETECTED POWER FUR UNIT TRANSMITTED POWER 
AS l ARNUSH-STOTTS APPROXIMATION FOR SIGNAL 
0 l PARAMETER IN THE EXPANSION OF OMEGA: 

OflEGA = TAU I 1 - Y*Y / 0 + .:.... 1 
P n O*G*G/4'tTAU 

EXTERNAL SUPROUTII~ES (FROM FTNMLIB) 
BJOR BESSEL FUNCTION OF ORDER 0 
DJlR BESSEL FUNCTION OF ORDER 1 
ERF ERROR FUNCTION 
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C 
OIWENSION B9~25b0~,SIGNAL~4~,AHP~4~~AS~31,SA~3),P~3l~GG~ZO~ 
DATA SP,DX / 1.77245385~0.05 i rQ I 12.0j2.0,b.O / 
DATA CC / 0.01,0.025~0,05~0.075~0.1~0.125,0.15,0.175~0.2~ 

1 0.25r0.3,0.35,0.4,0.45,0.5~0.6~0.7r0.e,0.9~1.0 I 
x~-Dx/z.o 

C 

: 
SET UP BB ARRAY OF Jl BESSEL FUNCTIONS 

DO 5 I=lr2560, 
XmXtDX 
CALL BJ~R(XIBB(I),IER) 

5 CONTINUE 

c” ASSUME INTEGRAL FROH 128 TO INFINITY ' JO(128.1 
C 

CALL BJOR(lZB.O,TAIL,IER) 
WRITE(6,lOl TAIL 

10 FDRMAT(SOX,*TAIL **,FlO.S) 

i DO LOOP OVER OPTICAL THICKNESS, TAU 
L 

00 70 J=l,lb 
TAU=J-1 
IF(J.EO.11 TAU=O.S 
TRANS=EXP(-TAU) 
WRITE(6,151 TAUjTRANS 

15 FOR~IAT(~H~,~OXI*OPTICAL THICKNESS, TAU n *,F5.l,lOXr*TR4NSflIl* 
1 *TANCE =+,E12.4,//,30X,+GAUSSIAN*~2OX~*EXPDNFNT1AL+~l4X~ 
2 *SEA WATER+,14X,*BI~~O~IAL*~//~l5X,*G*~9X~*~X~~l*~7X~ 
3 *APPROX*,Z~llX,*EXACT*~7X~~APPROX*~~BX,rEXACl*~/~ 

L 
c DO LODP OVER GEDHETRY FACTOR, G 
C 

DO 50 L=l,ZO 
GmGG(L1 
A~P(l)=AHP(Zl=AflP(3~~AMP(4)~TAIL 
X=-DXI2.0 

c” INTEGRAL FROH 0.0 TO 128.0 : 2560 EOUAL STEPS 
L 

DO 20 1*1,2560 hl 
W 
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05 

90 

9s 

C 
100 C 

: 

105 

110 

115 

120 

X-X+0X 
t31=90(11 
YmXlG 
CALL EPF(O.S*Y,ERFYl 
ONEGA~TAU*SP*EQFYIY 
A'lP~11.AHP~11+B1*EXP(OCEGAl*DX 
OHEGA~TAUISORTI1.O+YstZ) 
AHP~2l=AilP~2l+01*EXP~O~EGAI*DX 
OtlEGA=lAU/Y*ALOG(Y+SORT~l.O+Y**Zll 
AnP(3)~A~P(3)t31*EXP(ONEGA)~DX 
UflEGA~Z.O*TAU/Y 
IF(Y.LT.201 OMEGA=OHEGA-TAU*EXP(-YI*tl.O+Z.O/Yl 
AMPI4l~AtlP(4I+Bl*EXP~ONEGAl*DX 

20 CONTINUE 

NOW CALCULATE THE AQNUSH-STOTTS APPROXIMATION 
(QESULTS FOR PHASE FUNCTIONS 3 t 4 ARE IOENTICALl 

DO 25 1~193 
P=O~Il*G+G/4.0/TAU 
ASTIl~l.O-EXPt-Pl 
SA(Il=AS(II/TRANS 
SIGNAL(II=ARP(II*TRANS 

25 CONTINUE 
SIGNAL(4l~AMP(41+TRANS 
WRITE16,301 G~~A~P~1~,SA~I~rl~lr3~rhnP14~ 

30 FORNAT(llX,F7.3,3(3X,2Gl3.5),C13.5I 
WRITE(6,35) ~SIGNAL~Il,AS~II,I~1,3),SIGNAL~4I 

35 FORNAT~18X>3~3X,2G13.5)rG13.51 
50 CONTINUE 

WRITE~brbOl 
60 FORflAT(/,lOX,*THE FIRST LINE IS THE AflPLIFICATION FACTOR, THE *, 

1 *SECOKD LINE IS THE RECEIVED POWER (FOW UNIT INCIOEKT PO;IERl*l 
70 CONTINUE 

STOP 
END 



OPTICAL THICKNESSI TAU - 4.0 TRANStlITTANCE n .lfJ32E--01 

G 

. . . .".II 

-2: .* 

.GSO 

.c7: 

.lCO 

,125 

,150 

,175 

.?CO 

,250 

.?CO 

.35b 

.4cc 

,.4:c 

.::3 

.t:0 

.:c3 

. ice 

.iCO 

. -r- ..1-1 

GAUSSIAN EXPONENTIAL SEA WATER BiNOHIAL 

EXACT APPROX EXACT APPROX EXACT APPROX EXACT 

1.0822 
.19822E-01 
1.2377 
.22669E-01 
1.5605 
.235t!ZE-01 
1.9597 
.35894E-01 
2.4250 
.44431E-01 
2.9520 
.54069E-01 
3.5326 
.64702E-01 
4.1625 

. 40947E-02 

.74997E-04 

.25587E-01 

1.0427 

. 46864E-03 

.10228 
,10732E-02 
.22905 
.42099E-02 

40795 
:74719E-02 
.63609 

. 19098E-01 
1.1177 
.20471E-01 
1.2612 
.23100E-01 
1.4232 
.26067E-01 
1.6038 

. llbSOE-01 
.91361 
.16733E-01 
1.2398 
.22707E-01 
1.6136 
.29554E-01 
2.5002 
.45793E-01 
3.5637 
.b5272E-01 
4.7927 

. 29374E-01 
1.80.14 
.32995E-01 
2.0147 
.36901E-01 
2.2424 

. 76239E-01 
4.0371 
.90594E-01 
t.3035 
.11545 
7.9011 
.14471 
9.6024 
.17587 
11.383 
.20848 
13.220 
.24214 
15.094 
.27647 
18.085 
.3+509 
22.635 
.41457 
26.253 
.4hL04 
29.673 
.54349 
32.a51 
.60169 

. 1?77elE-01 
6.1739 
.11308 
7.t931 
a14090 
9.3347 
.17097 
12.919 
.23662 
16.791 
.30754 
20.U14 

. 41071E-01 
2.4035 

45487E-01 
i.0023 
.549896-01 
3.5649 
.65293E-01 
4.1659 
.76302E-01 
4.8008 

.68247E-03 

.12500E-04 

.42653E-02 
.78122E-04 
.17059E-01 
.312'r5E-03 
.30376E-01 
.70288E-03 
.68205E-01 
.12492E-02 
.10653 
.19512E-02 
l 15334' 
.28085E-02 
.20861 
.38208E-02 
.27231 
.49075E-02 
.42409 

. 3b122 
24.U5tl 
.4::20 
28.308 
.S2763 

. 87930E-01 
5.4655 
.lOOlO 
6.1562 
.11275 
7.6027 
.13925 
9.1171 
.16699 
10.6ao 
.19561 
12.274 
.22481 
13.886 
.25433 

. 77821E-02 

.61079 

.11107E-01 

.02967 

.15196E-01 
1.0811 
.19801E-01 
1.3647 
.24995E-01 
1.6798 
.30767E-01 
2.4025 
.44003E-01 
3.2430 
.59412E-01 
4.1977 
.76084E-01 
5.2574 
.96233E-01 
6.4155 
.11750 

1.2395 
.22702E-01 
1.5756 
.28858E-01 
2.1599 
.395bOE-01 
2.7831 
.50975E-01 
3.4400 
.63006E-01 
4.1246 
.75544E-01 
4.6316 
.88494E-01 
5.5567 
.10178 
6.2963 
.11532 
7.8064 
.14298 
9.3416 
.17110 
10.886 
.19939 
12.429 
.22764 
13.959 
.25567 
15.470 
.28335 
18.414 
.33727 
21.228 
.38880 
23.092 
,.43760 
26.390 
.48350 
28.742 
.52643 

.20474E-02 

.37499E-04 

.12795E-01 

.23435E-03 

.51162E-01 
.9370bE-03 
.11505 
.21072E-02 
.20436 
.37430E-02 
.31398 
.58422E-02 
.45873 
.84020E-02 
.62344 
.11419E-01 
.8128b 
.14888E-01 
1.2648 
.231bSE-01 
1.8119 
.33187E-01 
2.4514 
.44898E-01 
3.1795 
.58235E-01 
3.9925 
.7312bE-01 
4 .a860 
.89490E-01 
6.0949 
.12628 
9.1646 

16786 
il.650 
.21337 
14.302 
.26195 
17.073 
.31271 

:.D92b 
.20011E-01 
1.2bbl 
.23189E-01 
1.6239 
.23744E=Ol 
2.0590 
.37712E-01 
Z.JbOO 
.46008E-01 
3.1183 
.57114i-01 
3.7267 
.6825bE-01 
4.3780 
.80200E-01 
5.0691 
.92044E-01 
b.5447 
.11987 
8.1186 
a14870 
9.7613 
.17070 
11.448 
.20968 
13.159 
.24101 
14.875 
.27245 
18.272 
.33467 
21.554 
.39477 
24.664 
.45173 
27.570 
.50497 
30.258 
.55419 

Trl.FIRST LI'sE IS THE Ab'.PLIFIChTIO~l FACTOR> THE SCCOND LIfiE IS THE RECEIVED PCdER (FOR UtiiT INCIDENT POKER) 
E 
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.OlO 

.025 

,050 

,075 

,100 

.125 

.150 

.175 

.200 

,250 

,300 

.350 

,400 

.450 

,500 

,600 

,700 

,800 

,900 

l,.OOO 

OPTICAL THICKNESS, TAU l 10.0 TRANSHITTANCE . ,4540E-04 

GAUSS IAN 

EXACT 

1.6482 
.7482BE-04 
8.6159 
.3911bE-03 
25.201 
.11441E-02 
52.616 
.23BBBE-02 
90.753 
.41202E-02 
139.38 
.b3278E-02 
198.33 
.9004OE-02 
267.43 
.12141E-01 
346.50 
.15731E-01 
533.70 
.24234E-01 
750.49 
.34435E-01 
1018.7 
.4625 lE-01 
1312.5 
.59589E-01 
1637.7 
.74350E-01 
1991.9 
.90432E-01 
2770.2 
.12613 
3652.2 
.16581 
4594.5 
.20859 
5506.3 
.25362 
6609. b 
*30007 

APPROX 

.bb078 

.30000E-04 
4.1296 
.1874BE-03 
lb.514 
.74972E-03 
37.138 
. IbBblE-02 
65.980 
.29955E-02 
103.01 
L 46765E-02 
148.18 
.67273E-02 
201.44 
.91454E-02 
262.74 
.11928E-01 
409.15 
.18575E-01 
506.76 
.26639E-01 
794.70 
.36083E-01 
1032.3 
. 468 bbE-01 
1298.3 
.58942E-01 
1591 .b 
.72257E-01 
2254.9 
.10237 
3011.2 
.13671 
3047.9 
.I7469 
4751.7 
.21573 
5706.9 
.25918 

EXPONENTIAL 

EiACT APPROX 

1.1333 .11013 
.51453E-04 .50000E-05 
2.0765 .68032 
.94274E-04 .31250E-04 
7.1070 2.7531 
.322bbE-03 .12499E-03 
13.436 6.1941 
.6099OE-03 .20121E-03 
21.204 
.962bbE-03 
31.087 
.14113E-02 
43.167 
.19598E-02' 
57.393 
.2605bE-02 
73.724 
.33471E-02 
112.59 
.5lllbE-02 
159.59 
.?2454E-02 
214.56 
.97409E-02 
277.33 
.12591E-01 

11.010 
.4990BE-03 
17.201 
.78094E-03 
24.766 
.11244E-02 
33.702 
.15301E-02 
44.009 
.19900E-02 
60.725 
. 31201E-02 
90.096 
. 44899E-02 
134.50 
.61063E-02 
175.51 
.79681E-02 

347.75 221.09 
.15788E-01 .100?4E-01 
425.63 273.62 
.19323E-01 .12422E-01 
603.05 392.93 
.27370E-01 .1?839E-01 
808.09 533.c9 
.3668?E-01 .24202E-01 
1039.2 693.69 
.47170E-01 .31493E-01 
1294.6 074.25 
.50?7?E-01 .39091E-01 
1572.0 1074.2 
,71407E-01 .48771E-01 

SEA WATER BI!iOMlAL 

EXACT APPROX EXACT 

2.2419 .33039 1.6767 
.lOl?OE-03 .15000E-04 .76123i-C4 
0.5240 2.0649 7.4024 
.30699E-03 .9374bE-04 .3?607E-C3 
25.702 0.2504 22.560 
.llbb9E-02 .37493E-03 .10242!-02 
51.115 10.577 46.3?5 
.23206E-02 .04339E-03 .210:7E-C2 
05.476 33.015 73.335 
.3BEObE-02 .14989E-02 .36045E-G2 
128.42 51.564 121.37 
.50301E-02 .23410E-02 .55103E-02 
179.57 74.214 172.12 
.0152bE-02 .33693E-02 .?31kZf-Ci 
238.63 100.95 . 231.44 
.10834E-01 .45832E-02 .1050!E-01 
305.29 131.76 299.15 
.1306OE-01 .59020E-02 .13581E-01 
460.27 205.53 453.Eb 
.2009bE-01 .93312E-02 .23?32E-Cl 
642.20 295.36 649.53 
.2316OE-01 .13409E-01 .29;3ei-cl 
849.20 401.04 0t9.27 
.30553E-01 .10207E-01 .39465E-01 
1070.9 522.34 1116.1 
.48903E-01 .23714E-01 .SCi?ZE-Cl 
1329.5 658.99 1338.1 
.60359E-01 .2991BE-01 .63’JZOE-01 
1599.0 810.70 1683.2 
.?2594E-01 .3bOObE-01 . ?bilbE-01 
2187.4 1157.9 2334.3 
.99310E-01 .5256eE-01 a 1059t 
2C30.h 1560.9 3053.2 
.12051 , ?0864E-01 .13361 
3515.9 2016.2 3e24.3 
.15962 .9153bE-01 . l?!ki 
4232.4 2520.0 4t33 .i 
.19z15 .11441 . .- 1 2 f 4 
4970.1 3068.1 '5 4 : '5 . .I 
.22564 .13929 .2i31! 

7HE FIRST LINE IS THE AMPLIFICATION FACTOR , THE SECOND LINE IS THE PECElVED PI;kEq (FOP: 'J?(IT IhCI;'hT ::.$:I 
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FIGURE 1. Normalized phase functi'on p vs a* for four model phase 

functions. 
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FIGURE 2. fio/Ts vs. y for four model phase functions and for the Amush-Stotts 

approximation. 
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FIGURE 3. 

phase function. 
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Amplification factor A vs. geometry factor G for the Gaussian 
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FIGURE 4. Normalized power received vs. scattering optical thickness 

for the Gaussian phase function. 
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of T and four model phase functions for our approach and 
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